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MARGINAL CONTRIBUTIONS AND
EXTERNALITIES IN THE VALUE

BY GEOFFROY DE CLIPPEL AND ROBERTO SERRANO1

Our concern is the extension of the theory of the Shapley value to problems involving
externalities. Using the standard axiom systems behind the Shapley value leads to the
identification of bounds on players’ payoffs around an “externality-free” value. The ap-
proach determines the direction and maximum size of Pigouvian-like transfers among
players, transfers based on the specific nature of externalities that are compatible with
basic normative principles. Examples are provided to illustrate the approach and to
draw comparisons with previous literature.

KEYWORDS: Externalities, marginal contributions, Shapley value, Pigouvian trans-
fers.

1. INTRODUCTION

SINCE THE PATH-BREAKING WORK of Shapley (1953), much effort has been
devoted to the problem of “fair” distribution of the surplus generated by a
collection of people who are willing to cooperate with one another. More re-
cently, the same question has been posed in the realistic case where external-
ities across coalitions are present. This is the general problem to which this
paper contributes. The presence of such externalities is an important feature
in many applications. In an oligopolistic market, the profit of a cartel depends
on the level of cooperation among the competing firms. The power of a po-
litical alliance depends on the level of coordination among competing parties.
The benefit of an agent who refuses to participate in the production of a pub-
lic good depends on the level of cooperation of the other agents (free-riding
effect) and so on.

In the absence of externalities, Shapley (1953) obtained a remarkable
uniqueness result. He characterized a unique solution using the axioms of effi-
ciency, anonymity, additivity, and null player. Today we refer to this solution as
the Shapley value, which happens to be calculated as the average of marginal
contributions of players to coalitions. This comes as a surprise at first glance:
uniqueness is the consequence of four basic axioms, and nothing in those ax-
ioms hints at the marginality principle, of long tradition in economic theory. In
the clarification of this puzzle, Young (1985) provided a key piece. He formu-
lated the marginality principle as an axiom, that is, that the solution should be a
function of players’ marginal contributions to coalitions. He dropped additivity

1We thank Isa Emin Hafalir, Sergiu Hart, Eric Maskin, and David Pérez-Castrillo for com-
ments and encouragement. The comments of David Levine and two anonymous referees also
helped improve the exposition. Serrano gratefully acknowledges the hospitality of Universidad
Carlos III and CEMFI in Madrid, and research support from Fundación Banco Herrero and
Universidad Carlos III.

© 2008 The Econometric Society DOI: 10.3982/ECTA7224

http://www.econometricsociety.org/
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA7224


1414 G. DE CLIPPEL AND R. SERRANO

and null player as requirements. The result is that the only solution satisfying
efficiency, anonymity, and marginality is again the Shapley value.

In our extension of the theory of the Shapley value to settings with external-
ities, we shall also pursue an axiomatic analysis (we leave strategic considera-
tions and issues of coalition formation to a companion paper—de Clippel and
Serrano (2008)). In our axiomatic analysis, we will find that appealing systems
of basic axioms that were used in problems with no externalities do not suffice
to yield a unique solution. Thus, multiplicity of solutions seems essential to the
problem at hand (this is confirmed by previous studies, in which authors must
resort to new additional axioms to get uniqueness). Despite the multiple solu-
tions, the novelty of our approach is to provide refined predictions based on
payoff bounds implied by the axioms.

To tackle the question in axiomatic terms, we sort out the effects of intrin-
sic marginal contributions of players to coalitions from those coming from ex-
ternalities. The model we shall employ is that of partition functions, in which
the worth of a coalition S may vary with how the players not in S cooper-
ate. In the model, v(S�Π) is the worth of S when the coalition structure
is Π, S being an element of Π. To define player i’s marginal contribution
to coalition S—a trivial task in the absence of externalities—it is now cru-
cial to describe what happens after i leaves S. Suppose i plans to join T ,
another coalition in Π. The total effect on S of i’s move is the difference
v(S�Π)− v(S \ {i}� {S \ {i}�T ∪ {i}} ∪Π−S�−T ). This effect can be decomposed
into two. First, there is an intrinsic marginal contribution effect associated with i
leaving S but before joining T , that is, v(S�Π)− v(S \ {i}� {S \ {i}� {i}} ∪Π−S).
Second, there is an externality effect, which stems from the change in the worth
of S \ {i} when i, instead of remaining alone, joins T , that is, the difference
v(S \ {i}� {S \ {i}� {i}} ∪Π−S)− v(S \ {i}� {S \ {i}�T ∪ {i}} ∪Π−S�−T ). (Note how
this latter difference is not a “partial derivative,” a marginal contribution of
player i to coalition S.) Our results follow from exploiting this decomposition.2

Assuming that the grand coalition forms, we investigate the implications of
efficiency and anonymity, together with a weak version of marginality.3 Ac-
cording to this last property, the solution may depend on all the total effects—
the sum of the intrinsic marginal contribution and the externality effects. We
find the first noteworthy difference with respect to the case of no externalities,
because in our larger domain these axioms are compatible with a wide class
of linear and even nonlinear solutions (Examples 1 and 2). However, despite
such a large multiplicity of solutions, our first result shows that if the parti-
tion function can be written as the sum of a symmetric partition function and a

2In this decomposition, we are focusing on the “simplest path,” that is, that in which player
i leaves S and stays as a singleton before joining T . As we shall see, the singletons coalition
structure acts as a useful origin of coordinates from which externalities are measured.

3Similar results can be established for any exogenous coalition structure if the axioms are im-
posed atom by atom in the partition.
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characteristic function, a unique payoff profile is the consequence of the three
axioms (Proposition 1). As will be formally defined in the sequel, this class
amounts to having symmetric externalities.

For general partition functions, as a result of our first finding, we seek the
implications of strengthening the weak version of marginality, and we do so
in two ways. First, we require monotonicity, that is, a player’s payoff should
be increasing in all the total effects—the sum of his intrinsic marginal contri-
bution and externality effects. Then we are able to establish useful upper and
lower bounds to each player’s payoff (Proposition 2). Second, complement-
ing this result, we require a marginality axiom, according to which a player’s
payoff should depend on the vector of intrinsic marginal contributions, not on
the externality effect. The result is a characterization of an “externality-free”
value on the basis of efficiency, anonymity, and marginality (Proposition 3). In
a second characterization result (Proposition 4), this solution is obtained using
a system of axioms much like the original one attributable to Shapley (with a
strong version of the dummy axiom that also disregards externalities).4

The externality-free value thus appears to be a natural reference point. Ob-
viously, an analysis based solely on the externality-free value is not desirable
in a model of externalities. This is why we do not insist on uniqueness, and ac-
cept the multiplicity of solutions inherent to the problem. The combination of
both kinds of results—the externality-free value benchmark and the obtention
of bounds around it—is a way to understand how externalities might bene-
fit or punish a player in a context where normative principles are in place. In
effect, the two results together provide a range for acceptable Pigouvian-like
transfers (externality-driven taxes or subsidies among players) when efficiency
is accompanied by our other normative desiderata.

2. DEFINITIONS

Let N be the finite set of players. Coalitions are subsets of N . P(N) denotes
the set of all coalitions and lowercase letters denote the cardinality of coalitions
(s = #S, n = #N , etc.). A partition of N is a set Π = {(Sk)

K
k=1} (1 ≤ K ≤ n) of

disjoint coalitions that cover N , that is, Si ∩ Sj = ∅ for each 1 ≤ i < j ≤ K
and N = ⋃K

k=1 Sk. By convention, {∅} ∈ Π for every partition Π. Elements of
a partition are called atoms. A partition Π′ is finer than a partition Π if each
atom of Π′ is included in an atom of Π: if S′ ∈Π′, then S′ ⊆ S for some S ∈ Π.
We will say equivalently that Π is coarser than Π′. An embedded coalition is
a pair (S�Π), where Π is a partition and S is an atom of Π. EC denotes the
set of embedded coalitions. If S is a coalition and i is a member of S, then S−i

4Straightforward adaptations of the principle of balanced contributions (Myerson (1980)), of
the concept of potential (Hart and Mas-Colell (1989)), and of some bargaining procedures (Hart
and Mas-Colell (1996); Pérez-Castrillo and Wettstein (2001)), once applied to the larger domain
of partition functions, lead to the externality-free value as well.
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(resp. S+i) denotes the set S \ {i} (resp. S ∪ {i}). Similarly, if Π is a partition
and S is an atom of Π, then Π−S denotes the partition Π \ {S} of the set N \ S.

A partition function (Thrall and Lucas (1963)) is a function v that assigns to
every embedded coalition (S�Π) a real number v(S�Π), with the convention
v({∅}�Π) = 0, for all Π. Externalities are positive (resp. negative) if v(S�Π) ≥
v(S�Π ′) for each embedded coalition (S�Π) and (S�Π′) such that Π is coarser
(resp. finer) than Π′. There are no externalities if v(S�Π) = v(S�Π ′) for all
embedded coalitions (S�Π) and (S�Π′). In the latter case, a partition function
is also called a characteristic function.

A partition function is superadditive if each coalition can achieve as much
as the sum of what its parts can, that is,

∑K

k=1 v(Sk�Π
′) ≤ v(S�Π) for every

embedded coalition (S�Π) and every partition {(Sk)
K
k=1} of S (1 ≤ K ≤ s) with

Π ′ = Π−S ∪ {(Sk)
K
k=1}.5

A value is a function σ that assigns to every partition function v a unique
utility vector σ(v) ∈ RN . Shapley (1953) defined and axiomatized a value for
characteristic functions:

Shi(v) :=
∑

S⊆N s�t� i∈S

(s − 1)!(n− s)!
n! [v(S)− v(S−i)]

for each player i ∈ N and each characteristic function v. In the next sections, we
are concerned with the extension of the theory of the Shapley value to partition
functions.

3. WEAK MARGINALITY AND MULTIPLICITY OF SOLUTIONS

Based on the marginality principle, Young (1985) proposed a beautiful ax-
iomatization of the Shapley value for characteristic functions. We shall explore
the implications of marginality, together with other basic axioms, on the class
of partition functions. The first two axioms that we shall impose are hardly
controversial.

ANONYMITY: Let π be a permutation of N and let v be a partition func-
tion. Then σ(π(v)) = π(σ(v)), where π(v)(S�Π) = v(π(S)� {π(T)|T ∈ Π})
for each embedded coalition (S�Π) and π(x)i = xπ(i) for each x ∈ RN and each
i ∈N .

EFFICIENCY:
∑

i∈N σi(v)= v(N) for each partition function v.

5It is well known that a characteristic function v is superadditive if and only if v(R)+ v(T) ≤
v(R∪T) for every pair (R�T) of disjoint coalitions. In other words, it is sufficient to check the case
K = 2 in the absence of externalities. This observation does not extend to partition functions and
one needs to consider all the possible K’s (see Hafalir (2007, Example 1)). Notice that Hafalir
(2007) used the term “full cohesiveness” to describe superadditivity, while reserving the term
“superadditivity” for the property with K = 2.
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Anonymity means that players’ payoffs do not depend on their names. We as-
sume that the grand coalition forms and we leave issues of coalition formation
out of this paper. Efficiency then simply means that the value must be feasible
and exhaust all the benefits from cooperation, given that everyone cooperates.

Next, we turn to our discussion of marginality, central in our work. The mar-
ginal contribution of a player i within a coalition S is defined, for characteristic
functions, as the loss incurred by the other members of S if i leaves the group.
This number could depend on the organization of the players not in S when
there are externalities. It is natural, therefore, to define the marginal contribu-
tion of a player within each embedded coalition.

To begin, one may consider the general case where a player may join an-
other coalition after leaving S. Since many numbers qualify as marginal contri-
butions, the resulting marginality axiom is rather weak. Still, it coincides with
Young’s concept of marginal contributions in the absence of externalities.

WEAK MARGINALITY: Let v and v′ be two partition functions. If

v(S�Π)− v(S−i� {S−i� T+i} ∪Π−S�−T )

= v′(S�Π)− v′(S−i� {S−i� T+i} ∪Π−S�−T )

for each embedded coalition (S�Π) such that i ∈ S and each atom T of Π that is
different from S, then σi(v)= σi(v

′).

Suppose for instance that N = {i� j�k}. Then player i’s payoff should depend
only on the seven real numbers

Ai(v)= v(N� {N})− v
({j�k}� {{i}� {j�k}})�

Bi(v)= v
({i� j}� {{i� j}� {k}}) − v

({j}� {{j}� {i�k}})�
Ci(v) = v

({i� j}� {{i� j}� {k}}) − v
({j}� {{i}� {j}� {k}})�

Di(v)= v
({i�k}� {{i�k}� {j}}) − v

({k}� {{k}� {i� j}})�
Ei(v) = v

({i�k}� {{i�k}� {j}}) − v
({k}� {{i}� {j}� {k}})�

Fi(v)= v
({i}� {{i}� {j�k}})�

Gi(v) = v
({i}� {{i}� {j}� {k}})�

For general partition functions, there is no hope to get a characterization re-
sult of a value with Efficiency, Anonymity, and this weak notion of marginality.
To see this, consider the following examples:

EXAMPLE 1: The value σα, defined by σα
i (v) := 1

3Ai(v) + 1
6(αBi(v) + (1 −

α)Ci(v)) + 1
6(αDi(v) + (1 − α)Ei(v)) + 1

3(αFi(v) + (1 − α)Gi(v)), satisfies
Anonymity, Efficiency, and Weak Marginality for every α ∈ R. The values σα
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are instances of the average approach characterized by Macho-Stadler, Pérez-
Castrillo, and Wettstein (2007), as they coincide with the Shapley value of a
fictitious characteristic function vα, where vα({i}) = αv({i}� {{i}� {j�k}})+ (1 −
α)v({i}� {{i}� {j}� {k}}).

In addition, and what is perhaps more surprising, a large class of nonlinear
values satisfy the three axioms. (Recall that they imply linearity in the domain
of characteristic functions.) In this sense, our approach differs substantially
from Fujinaka’s (2004). He proposed several versions of marginality, whereby
a marginal contribution is constructed as a weighted linear average of the mar-
ginal contributions over different coalition structures. This assumption already
builds linearity in Fujinaka’s result.

EXAMPLE 2: Let m : R → R be any function. Then the value σα�m, defined
by σα�m

i (v) := σα
i (v) + m(Fi(v) − Gi(v)) − (m(Ci(v) − Bi(v)) + m(Ei(v) −

Di(v)))/2, also satisfies the three axioms. Observe that the differences Ci(v)−
Bi(v), Ei(v)−Di(v), and Fi(v)−Gi(v) measure the externality that the agents
face. The function m transforms the externality that a player faces into a trans-
fer paid equally by the two other players. The value σα�m is then obtained by
adding to σα the net transfer that each player receives.

We shall say that a partition function v is symmetric if π(v)(S�Π) = v(S�Π),
for each embedded coalition (S�Π) and each permutation π of the players.
That is, the worth of an embedded coalition is a function only of its cardinality
and of the cardinality of the other atoms of the partition.

The earlier examples illustrate the large class of linear and nonlinear solu-
tions compatible with the three axioms. Yet, one can obtain a surprisingly sharp
prediction on an interesting subclass of partition functions. This is the content
of our first result:

PROPOSITION 1: Let σ be a value that satisfies Anonymity, Efficiency, and
Weak Marginality. Let u be a symmetric partition function and let v be a char-
acteristic function. Then σi(u+ v) = u(N)

n
+ Shi(v) for each i ∈N .

PROOF: The proof is a variant of Young’s (1985) argument for characteristic
functions. To prove uniqueness, Young started by observing that any value that
satisfies the axioms must give a zero payoff to all the players when the game
is null. He then proved that any such value must coincide with the Shapley
value for any characteristic function v, proceeding by induction on the number
of nonzero terms appearing in Shapley’s (1953) decomposition of v in terms
of the vectors in the basis of the space of characteristic functions. The key to
prove our result is to start the induction with the symmetric partition func-
tion u instead of the null game. Details are found in de Clippel and Serrano
(2005). Q.E.D.
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Proposition 1 is straightforward if v is the null characteristic function. It co-
incides with Young’s (1985) result if u is the null partition function. The im-
portant conclusion we can draw from the proposition is that the three axioms
together imply additivity on the class of partition functions that can be de-
composed as the sum of a symmetric partition function and a characteristic
function.6 This result is not trivial, in view of Example 2. As an illustration of
the power of Proposition 1, consider the following example:

EXAMPLE 3: This example features prominently in Maskin (2003). A similar
example was first proposed by Ray and Vohra (1999, Example 1.2). It describes
a simple “free rider” problem created by a public good that can be produced
by each two-player coalition. The set of agents is N = {1�2�3} and the partition
function is

v(N) = 24�

v({1�2})= 12� v({1�3})= 13� v({2�3})= 14�

v
({i}� {{i}� {j�k}}) = 9 for all i� j�k�

v
({i}� {{i}� {j}� {k}}) = 0 for all i� j�k�

Observe that this partition function is not symmetric and it is not a character-
istic function, yet it can be decomposed as the sum of a characteristic function
v′ (where each coalition’s worth is zero, except v′({1�3})= 1 and v′({2�3})= 2)
and a symmetric partition function u. We conclude that any value σ that satis-
fies Anonymity, Efficiency, and Weak Marginality (and we remark that this is
a large class) must be such that

σ(v)= σ(u+ v′)= (8�8�8)+ (−0�5�0�0�5)= (7�5�8�8�5)

in this example.

Next, we wish to consider general partition functions again. Given the large
class of solutions identified in Examples 1 and 2 above, we propose to fol-
low two alternative paths. First, we shall strengthen Weak Marginality into a
monotonicity property. Second, we shall look more closely at the notion of
“marginal contributions” to propose an alternative marginality axiom. We un-
dertake each of the alternatives in the next two sections.

6We argue at the end of Section 5 that a partition function v can be decomposed as the sum
of a symmetric partition function and a characteristic function if and only if externalities are
symmetric for v.
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4. MONOTONICITY AND BOUNDS ON PAYOFFS

This section investigates what happens when, in addition to requiring Ef-
ficiency and Anonymity, Weak Marginality is strengthened to the following
monotonicity axiom. The result will be the derivation of useful bounds to the
payoff of each player.

MONOTONICITY7: Let v and v′ be two partition functions. If

v(S�Π)− v(S−i� {S−i� T+i} ∪Π−S�−T )

≥ v′(S�Π)− v′(S−i� {S−i� T+i} ∪Π−S�−T )

for each embedded coalition (S�Π) such that i ∈ S and each atom T of Π is
different from S, then σi(v)≥ σi(v

′).

In words, if for a partition function the vector of marginal contributions of
a player to the different coalitions, for any organization of the complement,
dominates coordinate by coordinate that of a second partition function, the
value must pay this player more in the first partition function. For instance, the
value σα of Example 1 is monotonic for each α ∈ [0�1].

First, we point out in the following example that Monotonicity, combined
with Anonymity and Efficiency, does not imply additivity either:

EXAMPLE 4: The value σα�m from Example 2 satisfies Monotonicity if α =
1/2, m(x) = x2 if |x| ≤ 1/12, and m(x) = (1/12)2 if |x| ≥ 1/12.

We may nevertheless bound each player’s payoff from below and from above.
The approach we follow seeks to obtain bounds that rely on decompositions of
certain partition functions into the sum of a symmetric partition function and
a characteristic function, the class of partition functions uncovered in Proposi-
tion 1.

Let S be the set of symmetric partition functions and let C be the set of
characteristic functions. Let i ∈ N . For each partition function v, let Mi(v) be
the set of pairs (u� v′) ∈ S × C such that

v(S�Π)− v(S−i� {S−i� T+i} ∪Π−S�−T )

≥ [
u(S�Π)− u(S−i� {S−i� T+i} ∪Π−S�−T )

] + [v′(S)− v′(S−i)]

7Perhaps the term “Weak Monotonicity” would be more appropriate to emphasize the link
with Weak Marginality, hence comparing all the total effects instead of limiting ourselves to the
intrinsic marginal contributions (see Section 5). Yet, since weak monotonicity has other meanings
and since it will not be necessary to introduce other monotonicity properties, we opted for the
term “monotonicity.”
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for each embedded coalition (S�Π) such that i ∈ S and each atom T of Π that
is different from S. Monotonicity and Proposition 1 imply that σi(v) ≥ u(N)

n
+

Shi(v
′) for each (u� v′) ∈ Mi(v). Therefore, the best lower bound following this

approach is obtained by solving the following linear programming problem,
which always has a unique optimal objective value:

μi(v)= max
(u�v′)∈Mi(v)

[
u(N)

n
+ Shi(v

′)
]
�

Similarly, for each partition function v, let Ni(v) be the set of pairs (u� v′) ∈
S × C such that

v(S�Π)− v(S−i� {S−i� T+i} ∪Π−S�−T )

≤ [
u(S�Π)− u(S−i� {S−i� T+i} ∪Π−S�−T )

] + [v′(S)− v′(S−i)]
for each embedded coalition (S�Π) such that i ∈ S and each atom T of Π that
is different from S. Again, Monotonicity and Proposition 1 imply that σi(v) ≤
u(N)

n
+ Shi(v

′), for each (u� v′) ∈ Ni(v). The best upper bound following this
approach is obtained by solving the linear programming problem

νi(v)= min
(u�v′)∈Ni(v)

[
u(N)

n
+ Shi(v

′)
]
�

That is, we have shown the following proposition:

PROPOSITION 2: If σ is a value that satisfies Anonymity, Efficiency, and
Monotonicity, then

σi(v) ∈ [μi(v)� νi(v)]
for each i ∈ N .

These bounds in general improve upon those that one could obtain by using
only symmetric partition functions or only characteristic functions. (In partic-
ular, the “most pessimistic” and “most optimistic” characteristic functions that
each player i can construct from the partition function. Player i’s most pes-
simistic characteristic function minimizes over Π the worth v(S�Π) of each
coalition, S where i ∈ S, and maximizes it for coalitions that do not include i.
The opposite happens for his most optimistic characteristic function.)

One important question is whether the bounds provided by Proposition 2
are “tight,” in the sense that for each partition function one can always find so-
lutions to fill up the entire identified cube of payoffs. Although we do not know
the answer to this question in general, at least for the case of three players, the
bounds are tight. We will elaborate on this point in the next section after we
prove its result.
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5. MARGINALITY AND THE EXTERNALITY-FREE VALUE

An alternative route to Monotonicity is to strengthen Weak Marginality into
another marginality axiom. To do this, it will be instructive to look closer at the
concept of marginal contribution in contexts with externalities.

Consider player i and an embedded coalition (S�Π) with i ∈ S. Suppose
player i leaves coalition S and joins coalition T ∈ Π, T 
= S. One can view
this as a two-step process. In the first instance, player i simply leaves S and, at
least for a while, he is alone, which means that for the moment the coalition
structure is {S−i� {i}} ∪ Π−S . At this point, coalition S−i feels the loss of player
i’s marginal contribution, that is,

v(S�Π)− v
(
S−i� {S−i� {i}} ∪Π−S

)
�

In the second step, player i joins coalition T ∈ Π−S , and then S−i is further
affected, but not because of a marginal contribution from player i. Rather, it is
affected because of the corresponding externalities created by this merger, that
is,

v
(
S−i� {S−i� {i}} ∪Π−S

) − v(S−i� {S−i� T+i} ∪Π−S�−T )�

If one views this as an important distinction, one should reserve the term (in-
trinsic) marginal contribution for the former difference. We shall do this in the
sequel.

Formally, let i be a player and let (S�Π) be an embedded coalition such that
i ∈ S. Then the (intrinsic) marginal contribution of i to (S�Π) is given by

mc(i�S�Π)(v)= v(S�Π)− v
(
S−i� {S−i� {i}} ∪Π−S

)
for each partition function v. Player i’s vector of intrinsic marginal contributions
is obtained by varying (S�Π): mci(v)= (mc(i�S�Π))(S�Π)∈EC∧i∈S . Here is the formal
statement of the new marginality axiom for partition functions (note that it also
reduces to Young’s if applied to characteristic functions).

MARGINALITY: Let i be a player and let v and v′ be two partition functions. If
mci(v)= mci(v′), then σi(v) = σi(v

′).

Consider now the following extension σ∗ of the Shapley value to partition
functions:

σ∗
i (v) := Shi(v

∗)

for each player i ∈ N and each partition function v, where v∗ is the fictitious
characteristic function defined as

v∗(S) := v
(
S� {S� {j}j∈N\S}

)
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for each coalition S.
We call this the externality-free value and we shall discuss it below. Our next

result follows.

PROPOSITION 3: σ∗ is the unique value satisfying Anonymity, Efficiency, and
Marginality.

PROOF: The set of partition functions forms a vector space. We prove the
proposition by defining an adequate basis. Let (S�Π) be an embedded coali-
tion, where S is nonempty. Then e(S�Π) is the partition function defined as

e(S�Π)(S
′�Π′)=

{1� if S ⊆ S′ and
(∀T ′ ∈ Π′ \ {S′})(∃T ∈ Π) :T ′ ⊆ T ,

0� otherwise.

LEMMA 1: The collection of vectors (e(S�Π))(S�Π)∈EC constitutes a basis of the
space of partition functions.

PROOF: The number of vectors in the collection equals the dimension of the
space. It remains to show that they are linearly independent, that is,∑

(S�Π)∈EC

α(S�Π)e(S�Π) = 0(1)

implies α(S�Π) = 0 for each (S�Π) ∈ EC.
Suppose on the contrary that there exists a collection (α(S�Π))(S�Π)∈EC of real

numbers satisfying (1) and such that α(S�Π) 
= 0, for some (S�Π) ∈ EC. Let
(S∗�Π∗) be an embedded coalition such that:

1. α(S∗�Π∗) 
= 0;
2. (∀(S�Π) ∈ EC) :S � S∗ ⇒ α(S�Π) = 0;
3. (∀(S∗�Π) ∈ EC s.t. Π 
= Π∗) :Π coarser than Π∗ ⇒ α(S∗�Π)= 0�

By definition, e(S�Π)(S
∗�Π∗) = 0 if S is not included in S∗. The second prop-

erty of (S∗�Π∗) then implies that[ ∑
(S�Π)∈EC

α(S�Π)e(S�Π)

]
(S∗�Π∗)=

[ ∑
(S∗�Π)∈EC

α(S∗�Π)e(S∗�Π)

]
(S∗�Π∗)�

By definition, e(S∗�Π)(S
∗�Π∗)= 0 if Π is not coarser than Π∗. The third prop-

erty of (S∗�Π∗) then implies that[ ∑
(S∗�Π)∈EC

α(S∗�Π)e(S∗�Π)

]
(S∗�Π∗)= α(S∗�Π∗)�

Equation (1) thus implies that α(S∗�Π∗)= 0, a contradiction. Q.E.D.
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Now we continue with the proof of Proposition 3. The properties of the
Shapley value imply that σ∗ satisfies the three axioms.

For uniqueness, let σ be a value satisfying the three axioms. We show that
σ(v) = σ∗(v) for each partition function v by induction on the number of
nonzero terms appearing in the basis decomposition of v.

Suppose first that v = αe(S�Π) for some α ∈ R and some (S�Π) ∈ EC. Let i ∈
N \S and let (S′�Π′) be any embedded coalition. The two following statements
are equivalent:

1. S ⊆ S′ and (∀T ′ ∈ Π′
−S′)(∃T ∈ Π) :T ′ ⊆ T .

2. S ⊆ S′ \ {i} and (∀T ′ ∈ {{i}�Π′
−S′ })(∃T ∈ Π) :T ′ ⊆ T .

Hence e(S�Π)(S
′�Π′) = 1 if and only if e(S�Π)(S

′
−i� {S′

−i� {i}�Π′
−S′ }) = 1. So,

mci(v) = mci(v0), where v0 is the null partition function (i.e., v0(S�Π) = 0
for each (S�Π) ∈ EC). Marginality implies that σi(v) = σi(v

0). Anonymity
and Efficiency imply that σi(v

0)= 0. Hence σi(v) = 0 = σ∗
i (v). Anonymity im-

plies in addition that σj(v) = σk(v) and σ∗
j (v) = σ∗

k(v) for all j�k in S. Hence
σ(v) = σ∗(v), since both σ and σ∗ satisfy Efficiency.

Suppose now that we have proved the result for all the partition functions
that have at most k nonzero terms when decomposed in the basis and let

v =
∑

(S�Π)∈EC

α(S�Π)e(S�Π)

be a partition function with exactly k + 1 nonzero coefficients. Let S∗ be the
intersection of the coalitions S for which there exists a partition Π such that
α(S�Π) is different from zero. If i ∈ N \ S∗, then player i’s marginal contribu-
tion vector in v coincides with his marginal contribution vector in the partition
function

v′ =
∑

(S�Π)∈EC s�t� i∈S
α(S�Π)e(S�Π)�

Marginality implies that σi(v)= σi(v
′). Note that the number of nonzero terms

in the basis decomposition of v′ is at most k. Then, by the induction hypothesis,
σi(v

′)= σ∗
i (v

′). Since σ∗ satisfies Marginality as well, we conclude that σi(v) =
σ∗

i (v). Anonymity implies in addition that σj(v) = σk(v) and σ∗
j (v) = σ∗

k(v)
for all j�k in S∗. Hence σ(v) = σ∗(v), since both σ and σ∗ satisfy Efficiency.
The proof of Proposition 3 is now complete. Q.E.D.

Marginality does not imply on its own that externalities play no role in the
computation of payoffs. Indeed, a player’s intrinsic marginal contribution to
an embedded coalition (S�Π) depends on the composition of Π−S . Instead,
it is the combination of Marginality, Efficiency, and Anonymity that leads to
the externality-free value. Hence, Proposition 3 is definitely not a trivial vari-
ation on Young’s (1985) original theorem: some information present in the
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partition function has to be discarded as a consequence of the combination
of the three axioms. To gain an intuition for this, consider first a three-player
partition function. The result tells us that player 1’s payoff does not depend
on x = v({1}� {{1}� {2�3}}). This does not follow from any of the three axioms
taken separately (in particular, by Marginality it could depend on x if S = {1}
and Π−S = {{2�3}} in the definition of the axiom). Instead, the reasoning goes
as follows. Player 2’s and 3’s payoffs do not depend on x according to Marginal-
ity. Efficiency then implies that player 1’s payoff cannot depend on x either.

To strengthen one’s intuition, let us pursue this heuristic argument with
four players. In principle, player 1’s payoff could depend on fifteen numbers
according to Marginality. Only eight of them are actually relevant to com-
pute σ∗. Let us show, for instance, why player 1’s payoff cannot depend on
y = v({1}� {{1}� {2�3}� {4}}). Marginality implies that, apart from player 1’s pay-
off, only the payoff of player 4 could depend on y or, more precisely, on z − y ,
where z = v({1�4}� {{1�4}� {2�3}}). Marginality implies also that the payoffs of
players 2 and 3 do not depend on z. On the other hand, as we know from
Proposition 3, the three axioms together imply that the solution must be an
anonymous and additive function. Thus, the payoffs of players 1 and 4 depend
identically on z (if z increases, payoffs to both players 1 and 4 also increase).
Hence, Efficiency implies that player 4’s payoff cannot depend on z and there-
fore not on y either. Player 2’s and 3’s payoffs do not depend on y by Mar-
ginality. Hence player 1’s payoff cannot depend on y , by Efficiency.

We regard the externality-free value σ∗ as a fair compromise that takes
into account the pure or intrinsic marginal contributions of players to coali-
tions, stripped down from externality components. Note also that σ∗ satis-
fies Monotonicity. Then the range of payoffs identified in Proposition 2 for
each player captures how externalities affect his payoff, when one still re-
quires Efficiency, Anonymity, and Monotonicity. Thus, the size of the differ-
ence νi(v) − σ∗

i (v) expresses the maximum “subsidy” or benefit to player i
associated with externalities that favor him, and the difference σ∗

i (v) − μi(v)
represents how much i can be “taxed” or suffer, due to harmful externalities,
in a value that obeys these three axioms.

Consider the case of three players, N = {i� j�k}. By solving the linear pro-
grams described to prove Proposition 2, one can show that

νi(v)− σ∗
i (v)= max{0� εi(v)− εj(v)} + max{0� εi(v)− εk(v)}

6
�

σ∗
i (v)−μi(v)= max{0� εj(v)− εi(v)} + max{0� εk(v)− εi(v)}

6
�

where εi(v) = v({i}� {{i}� {j�k}}) − v({i}� {{i}� {j}� {k}}) is the externality index
associated to player i. Notice that it is not the sign or the magnitude of εi(v)
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alone that determines the bounds on player i’s payoff, but instead how far εi(v)
is from εj(v) and εk(v). To fix ideas, suppose that εi(v)≤ εj(v)≤ εk(v). Then

σi(v) ∈ [σ1
i (v)�σ

0
i (v)] and σk(v) ∈ [σ0

k(v)�σ
1
k(v)]�

Here, σ0 and σ1 are the solutions σα of Example 1 for the cases of α = 0
and α = 1, respectively (σ0 = σ∗). The bounds are intuitive. For the player
who benefits the least from externalities (player i), the lowest possible pay-
off compatible with the axioms happens at the Shapley value of the average
characteristic function that puts all the weight on his worth when players j and
k cooperate. His highest possible payoff is obtained at the Shapley value of
the average characteristic function where his worth corresponds to the situa-
tion in which players j and k do not cooperate. Exactly the opposite happens
for player k, who benefits the most from externalities. Therefore, the bounds
we obtained in Proposition 2 are tight in the following sense. There exists a
value (e.g., σ0 or σ1) that satisfies Anonymity, Efficiency, and Monotonic-
ity, and such that, for each partition function v, some player gets the lower
bound, while another player gets the upper bound, as defined before Proposi-
tion 2. Another observation in support of the tightness of our bounds is that
νi(v) ≤ v(N)−μj(v)−μk(v) and that μi(v) ≥ v(N)− νj(v)− νk(v) (for each
i� j�k). The easy proof is left to the interested reader. The next example fur-
ther illustrates the tightness of the bounds and the relative position of σ∗ within
those bounds.

EXAMPLE 5: Consider a variant of Example 3 in which player 1 is the only
agent capable of free-riding from a two-player coalition, receiving a worth of 9,
as before, when coalition {2�3} gets together. However,

v
({2}� {{2}� {1�3}}) = v

({3}� {{3}� {1�2}}) = 0�

One can easily check that σ0(v) = σ∗(v) = (7�5�8�8�5), σ1(v) = (10�5�6�5�7),
and that the bounds from Proposition 2 are

μ1(v) = 7�5� ν1(v)= 10�5;
μ2(v) = 6�5� ν2(v)= 8;
μ3(v) = 7� ν3(v) = 8�5�

That is, no monotonic solution σ ever punishes player 1 or rewards 2 and 3
with respect to the payoffs in σ∗. Given the nature of externalities in this ex-
ample (player 1 is the only one who benefits from externalities), it is clear what
direction externality-driven transfers should take for each player.

For more than three players, we do not know how tight the bounds of Propo-
sition 2 are. However, in many examples, they certainly provide an insightful
refinement of the set of feasible payoffs.
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In the same way that σ∗ serves as an interesting reference point in the space
of payoffs, the characteristic function v∗ can serve as an interesting reference
point to measure the size of externalities. Let us define the externality index
εv(S�Π) associated to (S�Π) as the difference v(S�Π) − v∗(S) (as in Exam-
ple 2 or in the discussion preceding Example 5).8 We can now better under-
stand the class of partition functions that was uncovered in Proposition 1 and
that plays a key role in many parts of our paper. Externalities are symmetric
for v if the associated externality indices (εv(S�Π))(S�Π)∈EC form a symmetric
partition function, that is, the level of externality associated to any embedded
coalition (S�Π) depends only on the cardinality of S and on the cardinality of
the other atoms of Π. It is then not difficult to check that a partition function
can be decomposed as the sum of a symmetric partition function and a char-
acteristic function if and only if externalities are symmetric for v. Example 3
provides an illustration of this equivalence.

6. ALTERNATIVE APPROACHES TO THE EXTERNALITY-FREE VALUE

A natural adaptation of Shapley’s original axiomatic system also leads to the
externality-free value σ∗. Let i be a player and let v be a partition function.
We say that player i is null in v if his marginal contribution to any embedded
coalition is nil: mci(v) = 0. Note how this notion of a null player disregards
externalities, as only intrinsic marginal contributions matter.

NULL PLAYER: Let v be a partition function. If player i is null in v, then
σi(v)= 0.

ADDITIVITY: Let v and w be two partition functions. Then σ(v+w) = σ(v)+
σ(w).

A null player must receive a zero payoff, according to the first axiom. Addi-
tivity essentially amounts to the linearity of the value.9 It expresses a form of
mathematical simplicity by requiring a strong specific functional form.

PROPOSITION 4: σ∗ is the unique value satisfying Anonymity, Efficiency, Null
Player, and Additivity.

PROOF: The properties of the Shapley value imply that σ∗ satisfies the four
axioms.

8Any difference v(S�Π) − v(S�Π′) can be recovered from our externality indices, since
v(S�Π)− v(S�Π′) = εv(S�Π)− εv(S�Π

′).
9To be precise, it implies linearity only with respect to linear combinations involving rational

numbers; see Macho-Stadler, Pérez-Castrillo, and Wettstein (2007).
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Let σ be a value satisfying the four axioms and let v be a partition function.
Remember that v can be decomposed in the basis described in Lemma 1:

v =
∑

(S�Π)∈EC

α(S�Π)e(S�Π)(2)

for some real numbers α(S�Π). Anonymity, Null Player, and Efficiency im-
ply that σ(α(S�Π)e(S�Π)) = σ∗(α(S�Π)e(S�Π)) for each (S�Π) ∈ EC (a similar
argument was made in the proof of Proposition 3). Since both σ and σ∗ are
additive, we conclude that σ(v) = σ∗(v). Q.E.D.

Proposition 4 is equivalent to Theorem 2 of Pham Do and Norde (2007).
However, their proof relies on the canonical basis instead of using the basis
identified in Lemma 1. Our basis has the advantage of allowing us to prove a
similar result on the smaller class of superadditive partition functions.

A player is null if his vector of marginal contributions is nihil. The other
notion of marginal contributions, which contained the externality effects and
was used to define Weak Marginality, leads in turn to a weaker version of the
null player property. Player i is null in the strong sense if

v(S�Π)− v(S−i� {S−i� T+i} ∪Π−S�−T )= 0

for each embedded coalition (S�Π) such that i ∈ S and each atom T of Π that
is different from S. Clearly, if player i is null in the strong sense, then he is null.
One can use this definition to propose a different null player axiom:

WEAK VERSION OF THE NULL PLAYER AXIOM: Let i ∈ N and let v be a
partition function. If player i is null in the strong sense, then σi(v)= 0.

This is equivalent to the dummy player axiom of Bolger (1989) and
Macho-Stadler, Pérez-Castrillo, and Wettstein (2007).10 Macho-Stadler, Pérez-
Castrillo, and Wettstein (2007, Theorem 1) showed that any solution that sat-
isfies this version of the Null Player axiom, as well as the axioms of Efficiency,
linearity and (a strong version of) Anonymity is a Shapley value of a character-
istic function that is obtained by performing averages of the partition function.
Our externality-free value σ∗ belongs to this class of solutions. Macho-Stadler,
Pérez-Castrillo, and Wettstein also characterized a unique solution by adding
an axiom of similar influence that σ∗ does not satisfy.

10Bolger and Macho-Stadler, Pérez-Castrillo, and Wettstein said that player i is dummy if
v(S�Π) = v(S′�Π′) for each (S�Π) and each (S′�Π′) that can be deduced from (S�Π) by chang-
ing player i’s affiliation. This clearly implies that player i is null in our strong sense. The converse
is straightforward after proving that v(S�Π) = v(S�Π′) for each pair of embedded coalitions
(S�Π) and (S�Π′) such that i /∈ S and (S�Π′) can be deduced from (S�Π) by changing only
player i’s affiliation. Indeed, if i is null in our strong sense, then v(S�Π) = v(S+i� {S+i} ∪ {T−i|T ∈
Π−S})= v(S+i� {S+i} ∪ {T−i|T ∈Π′

−S})= v(S�Π′).
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In light of our first discussion concerning even nonlinear solutions (recall
Example 2), we prefer Proposition 3 to Proposition 4 (even though both lead
to the same value), because we find Marginality more compelling than Addi-
tivity. It is easier to interpret and justify a restriction on the set of variables
required to compute the players’ payoffs, than to impose a specific functional
form. It is interesting to note in that respect that the nonadditive solution de-
fined in Example 4 satisfies the strong symmetry and the similar influence ax-
ioms of Macho-Stadler, Pérez-Castrillo, and Wettstein (2007), in addition to
satisfying Anonymity, Efficiency, and Weak Marginality. Once again, Additiv-
ity cannot be justified by the marginality principle that underlies their dummy
player axiom (the weak version of marginality), even if one imposes their other
requirements.

One can take a bargaining approach to understand the Shapley value. This
was done, for instance, in Hart and Mas-Colell (1996) or Pérez-Castrillo and
Wettstein (2001) for characteristic functions. It is not difficult to see that we
obtain σ∗ if we apply these procedures to superadditive partition functions.
Indeed, it is assumed in these two papers that when a proposal is rejected, the
proposer goes off by himself and does not form a coalition with anyone else.
We leave the details to the interested reader. Other new rules concerning the
rejected proposers would lead to values that treat externalities differently (see
Macho-Stadler, Pérez-Castrillo, and Wettstein (2006)).

Myerson’s (1980) principle of balanced contributions (or the related con-
cept of potential proposed by Hart and Mas-Colell (1989)) offers another ele-
gant justification for the Shapley value. Instead of characterizing a value (i.e., a
function that determines a payoff vector for each characteristic function), My-
erson characterizes a payoff configuration (i.e., a vector that determines how
the members of each coalition would share the surplus that is created should
they cooperate). A payoff configuration satisfies the principle of balanced con-
tributions if, for any two members i� j of any coalition S, the payoff loss that
player i suffers if player j leaves S equals the payoff loss that player j suffers if
player i leaves S. This principle, combined with efficiency within each coalition,
implies that the players agree on the Shapley value within the grand coalition.
This methodology can be easily extended to partition functions. As was the
case with our analysis of Young’s marginal contributions, the payoff loss that
a player i suffers if a player j leaves S usually depends on what i does after
leaving S (stay on his own or join another atom, and, if so, which one?). It may
be worthwhile to study different scenarios. Here we simply observe that if a
player is assumed to stay on his own after leaving a coalition (as was the case
for our concept of intrinsic marginal contribution), then the extended principle
of balanced contributions à la Myerson leads to a unique payoff configuration,
and the resulting payoff for the grand coalition coincides once again with the
payoff associated to the externality-free value. We again leave the details to the
interested reader.
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Section 5 and the current section together lead to an apparent conclusion.
Suppose one simply wishes to find an extension of the Shapley value to envi-
ronments with externalities by using any of the different approaches that have
provided its foundations on the domain of characteristic functions. Then the
result is the externality-free value, using our intrinsic marginal contributions
as the parallel concept to the standard marginal contributions of the reduced
domain. However, in dealing with externalities, any such approach must be
complemented by a treatment of the externalities themselves, and that is what
has led to the bounds around the externality-free value.

7. COMPARISONS WITH THE LITERATURE

In this section we present some examples to draw comparisons with previous
axiomatic approaches in the literature.

Myerson (1977) proposed the first value for partition functions. His key ax-
iom is a version of the carrier axiom, used also in the domain of characteristic
functions. This value violates Monotonicity and sometimes yields unintuitive
predictions.

EXAMPLE 6: Consider the three-player partition function v, where v({1}�
{{1}� {2�3}})= 1 = v(N) and v(S�Π) = 0 otherwise. Myerson’s value, (1�0�0),
falls outside of our cube of payoffs ([1/3�2/3] for player 1 and [1/6�1/3] for
players 2 and 3). Hence Myerson’s value is not monotonic.

In a second three-player partition function, where v(N) = v({1}� {{1}� {2}�
{3}}) = 1 and v(S�Π) = 0 otherwise, Myerson’s value assigns the payoffs
(0�1/2�1/2). Again, this falls outside of our range of payoffs, which is the same
as before.

The cube of payoffs compatible with Monotonicity is the same for both
partition functions. However, the externality-free value and the direction
of the externality-based transfers do vary. The externality-free value yields
(1/3�1/3�1/3) in the first partition function, and taking into account externali-
ty-based transfers in monotonic values can only help player 1 at the expense
of either player 2 or 3—positive externalities on 1 when 2 and 3 cooperate. In
contrast, σ∗ yields (2/3�1/6�1/6) in the second partition function, and taking
externalities into account can only hurt player 1 to favor 2 and 3—negative
externalities for 1 when 2 and 3 get together.

Bolger’s (1989) work is based on the additivity axiom, yet he characterizes a
unique value, while using the weak dummy axiom as in Macho-Stadler, Pérez-
Castrillo, and Wettstein (2007), by introducing an axiom of (expected) mar-
ginality. Bolger applies this axiom only on the class of “simple games.” The
expectation is computed by assuming that a player has an equal chance of join-
ing any of the other atoms when he is leaving a group. Macho-Stadler, Pérez-
Castrillo, and Wettstein (2007) showed that Bolger’s value cannot be obtained



MARGINAL CONTRIBUTIONS AND EXTERNALITIES 1431

through the “average approach” and that it violates their axioms of strong sym-
metry and similar influence. Clearly, it also violates our Null Player axiom.

EXAMPLE 7: Consider the following three-player partition function, where

v(N) = v({2�3})= 1�

v({1�2})= v({1�3})= 1/2�

v
({2}� {{1}� {2}� {3}}) = a� v

({3}� {{1}� {2}� {3}}) = a�

v
({2}� {{2}� {1�3}}) = 1 − a� v

({3}� {{3}� {1�2}}) = 1 − a�

v
({1}� {{1}� {2}� {3}}) = v

({1}� {{1}� {2�3}}) = 0�

Because of the expected marginality axiom, player 1 is null “in average”: for
example, if he abandons coalition {1�2} and there is equal probability of him
being alone or joining player 3, his expected marginal contribution (as defined
by Bolger) to player 2 is 0. Bolger’s value assigns to this partition function the
payoffs (0�1/2�1/2). This is true with independence of the size of the parame-
ter a. In contrast,

σ∗(v) =
(

0�5 − a

3
�

2�5 + a

6
�

2�5 + a

6

)
�

That is, as a increases, the externality-free value transfers surplus from player
1 to players 2 and 3.

The bounds depend on whether the externality is positive or negative. If
a < 1/2, then

μ1(v) = σ∗
1 (v)− 1 − 2a

3
� ν1(v)= σ∗

1 (v)�

μ2(v) = σ∗
2 (v)� ν2(v)= σ∗

2 (v)+ 1 − 2a
6

�

μ3(v) = σ∗
3 (v)� ν3(v)= σ∗

3 (v)+ 1 − 2a
6

�

So, if externalities are to be taken into account in the determination of the
solution, players 2 and 3 should expect positive transfers from player 1 with
respect to the externality-free value.

However, the opposite happens if a > 1/2:

μ1(v) = σ∗
1 (v)� ν1(v)= σ∗

1 (v)+ 2a− 1
3

�

μ2(v) = σ∗
2 (v)− 2a− 1

6
� ν2(v)= σ∗

2 (v)�
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μ3(v) = σ∗
3 (v)− 2a− 1

6
� ν3(v) = σ∗

3 (v)�

Macho-Stadler, Pérez-Castrillo, and Wettstein (2007) used a “similar influ-
ence” axiom to uniquely characterize a value within the class of solutions that
they term the average approach. In the previous example, the value identi-
fied by Macho-Stadler, Pérez-Castrillo, and Wettstein coincides with Bolger’s
and, hence, it is insensitive to the parameter a.11 To better understand the dif-
ferences between Macho-Stadler, Pérez-Castrillo, and Wettstein and our ap-
proach, the next two examples are illustrative.

EXAMPLE 8: Suppose there are 101 players. Let v(N) = v({1}� {{i}i∈N}) = 1
and v(S�Π) = 0 otherwise. The Macho-Stadler, Pérez-Castrillo, and Wettstein
value coincides with the Shapley value of the average characteristic function
v̄, where v̄({1}) = 1/100!, a very small positive number. Their value thus pre-
scribes something extremely close to equal split, paying about 1/101 per player
(player 1 getting a tiny bit more than the others). According to our approach,
the externality-free value pays 2/101 to player 1 and 99/10,100 to each of the
others. Player 1 gets more than double of the share the others if one ignores
externalities. Our cube allows the range of payoffs for player 1 to vary between
1/101 and 2/101, underlining the fact that he will have to worry about making
transfers to the others to bribe them not to cooperate. For the others, the range
of payoffs places the externality-free value at the bottom, from which they can
only improve through transfers from player 1. This seems to capture better
what is going on in the problem. Indeed, the partition function is “strongly
asymmetric” from player 1’s point of view, and so it is counterintuitive to pre-
scribe essentially the equal split, as the Macho-Stadler, Pérez-Castrillo, and
Wettstein value does. Our cube of payoffs and the position of σ∗ in it seem to
better capture the “strong asymmetry” of the partition function.

In the next example, we show that the cube of payoffs identified by our
bounds contains payoffs associated with nonlinear solutions, which cannot be
obtained through Monotonicity in the average approach of Macho-Stadler,
Pérez-Castrillo, and Wettstein (2007). The example also shows that the ax-
ioms may imply restrictions on the players’ payoffs that are not captured by
the bounds.

EXAMPLE 9: Consider the three-player partition function

v(N) = 1�

11The same payoff is prescribed for that partition function by the value proposed by Albizuri,
Arin, and Rubio (2005), because of their embedded coalition anonymity axiom. This value is one
of the average approach values of Macho-Stadler, Pérez-Castrillo, and Wettstein (2007).
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v({i� j})= 0 for all i� j�

v
({1}� {{1}� {2�3}}) = 1/10�

v
({2}� {{2}� {1�3}}) = 1/20�

v
({3}� {{3}� {1�2}}) = 0�

v
({i}� {{i}� {j}� {k}}) = 0 for all i� j�k�

The cube of payoffs associated with monotonic values is

μ1(v) = 1
3
� ν1(v) = 1

3
+ 1

40
�

μ2(v) = 1
3

− 1
120

� ν2(v) = 1
3

+ 1
120

�

μ3(v) = 1
3

− 1
40

� ν3(v)= 1
3
�

Using α = 0 in the average approach gives the externality-free value, which
yields an equal split of surplus: σ∗(v) = (1/3�1/3�1/3). On the other hand, if
α = 1, the corresponding average approach value gives σ1(v) = ( 1

3 + 1
40 �

1
3 �

1
3 −

1
40). Player 2 actually receives 1/3 according to every monotonic value obtained
from the average approach.

However, the nonlinear monotonic value of Example 4 gives

σα�m(v) =
(

1
3

+ 131
7200

�
1
3

− 7
7200

�
1
3

− 124
7200

)
�

Here, the transfers driven by externalities do not cancel out for player 2, be-
cause they enter nonlinearly in the solution. Nonlinear solutions are far more
complex than their linear counterparts, as the next paragraph will suggest.

Let us rescale up the partition function of this example by multiplying it by
60. Call the resulting partition function v′. The new bounds are

μ1(v
′) = 20� ν1(v

′)= 21�5�

μ2(v
′) = 19�5� ν2(v

′)= 20�5�

μ3(v
′) = 18�5� ν3(v

′)= 20�

The average approach, under α = 0, yields σ∗(v′) = (20�20�20). With α = 1,
it yields σ1(v′) = (21�5�20�18�5). Again, every monotonic average approach
value will pay player 2 exactly 20. That is, so far everything has been rescaled
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up by the same factor of 60. However, consider our monotonic solution of
Example 4. It yields

σα�m(v′)=
(

20 + 217
288

�20 + 1
288

�20 − 109
144

)
�

which does not preserve the rescaling and which, more interestingly, changes
the nature of transfers across agents vis-à-vis the externality-free payoff.

The partition function v also illustrates another point. Let v′′ be the partition
function obtained from v by increasing the surplus of agent 2 to 1/10 when he
free-rides. If the value is monotonic, then player 2’s payoff is larger in v′′ than
in v, while player 1’s payoff is larger in v than in v′′. On the other hand, if the
value is anonymous, then players 1 and 2 must receive the same payoffs in v′′.
Hence player 1’s payoff is larger than player 2’s payoff in v. This conclusion
cannot be reached by comparing the bounds, since ν2(v) > μ1(v). Hence it
is possible, for some partition functions, to reach conclusions regarding the
players’ payoffs that are not captured by the bounds.

Fujinaka (2004) introduced different notions of marginalism, using exoge-
nous weights to aggregate the different scenarios that could follow the depar-
ture of a coalitional member. Particularly, his axiom boils down to Marginality
if one puts all the weight on the scenario where a player stays on his own af-
ter leaving a coalition. Hence it appears that Fujinaka obtained independently
a result similar to our third proposition. His proof differs substantially from
ours and does not make use of the basis we uncovered in Lemma 1. It is not
clear whether his proof can be adapted to apply on the important subclass of
superadditive partition functions as ours does. Our decomposition of the total
effect into the intrinsic marginal contribution and the externality effect at the
beginning of Section 5 shows that if one has to choose one specific scenario
within the class of scenarios considered by Fujinaka, the one where a player
stays on his own after leaving a coalition is well motivated and appealing. Ac-
tually, many of Fujinaka’s values are not monotonic.

EXAMPLE 10: Consider the partition function from Example 5. Recall that
Efficiency, Anonymity, and Monotonicity of σ determine the payoff intervals

σ1(v) ∈ [7�5�10�5]� σ2(v) ∈ [6�5�8]� σ3(v) ∈ [7�8�5]�
Using Fujinaka’s notation, consider the case where αi({j}� {{j}� {i}� {k}}) = −1
and αi({j}� {{j}� {i�k}}) = 2. The associated value yields the payoff (13�5�5�
5�5), which falls outside the cube.

Maskin (2003) also provided an axiomatic treatment of coalitional problems
with externalities, although his axioms are best understood in the context of
his specific strategic model. The best comparison between his work and ours is
drawn from our coalition formation analysis in de Clippel and Serrano (2008).
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8. CONCLUSION

This paper has explored partition functions. Our basic approach is rooted
in the concept of marginal contributions of players to coalitions. In problems
involving externalities, we have argued how important it is to separate the con-
cept of intrinsic marginal contributions from that of externalities.

The paper follows an axiomatic methodology and presumes that the grand
coalition has exogenously formed. Then the implications of Anonymity,
Monotonicity, and Marginality are explored, leading to two main results: the
first one establishes bounds to players’ payoffs if they are to be derived from
solutions that are monotonic with respect to the (weak version of) marginal
contributions. The second result provides a sharp characterization of a solution
that captures value-like principles, if one abstracts from the externalities. The
combination of both results provides insights to the size of the Pigouvian-like
transfers compatible with our normative principles. Based on this analysis, one
can extend the results to arbitrary coalition structures. This extension and its
application to coalition formation are found in de Clippel and Serrano (2008).
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